Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

Short communication

Thermal instability of Olivine-type LiMnPO₄ cathodes

Guoying Chen*, Thomas J. Richardson

Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 62-203, Berkeley, CA 94720, USA

ARTICLE INFO

Article history: Received 7 July 2009 Received in revised form 17 August 2009 Accepted 18 August 2009 Available online 25 August 2009

Keywords: Thermal stability Lithium batteries Olivine phosphates

ABSTRACT

The remarkable thermal stability of LiFePO₄ and its charged counterpart, FePO₄, have been instrumental in its commercialization as a lithium-ion battery cathode material. Despite the similarity in composition and structure, and despite the high thermal stability of the parent compound, LiMnPO₄, we find that the delithiated phase Li_yMnPO₄ (which contains a small amount of residual lithium), is relatively unstable and reactive toward a lithium-ion electrolyte. The onset temperature for heat evolution in the presence of 1 M LiPF₆ in 1:1 ethylene carbonate/propylene carbonate is around 150 °C, and the total evolved heat is 884J g⁻¹, comparable to that produced under similar conditions by charged LiCoO₂ electrodes. © 2009 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that charged oxide cathodes such as Li_xCoO₂, Li_xNiO₂, Li_xMn₂O₄, Li_xNi_{0.8}Co_{0.2}O₂, Li_x(Ni_{0.8}Co_{0.15}Al_{0.05})O₂, and Li_y[Ni_xCo_{1-2x}Mn_x]O₂ decompose and release O₂ at elevated temperatures [1–5]. The released O₂ can ignite the organic solvents in the electrolyte and create hazardous conditions including fire and explosion. Olivine-type LiMPO₄ (M = Fe, Mn, Co and Ni) compounds have been promoted as safe alternatives. The strong covalent P–O bonds in the tetrahedral (PO₄)^{3–} anion are believed to inhibit oxygen loss. Heterosite FePO₄ is stable in air up to 600 °C, above which it transforms into quartz-like FePO₄ without losing oxygen [6]. When FePO₄ is mixed with LiFePO₄, the miscibility gap between the two end members shrinks and single-phase solid solutions are formed at temperatures above 250 °C [7–9].

Our recent study [10], however, revealed that fundamental differences exist between LiFePO₄ and LiMnPO₄. Chemical or electrochemical delithiation of sub-micron-sized crystals of LiMnPO₄ at room temperature produced nonstoichiometric Li_yMnPO₄ phases with y < 0.16. When xLiMnPO₄/(1 - x)Li_yMnPO₄ ($0 \le x < 1$) mixtures were heated under flowing N₂, the delithiated phase decomposed to form Mn₂P₂O₇ and release O₂. High temperature single-phase Li_xMnPO₄ solid solutions were not formed from the mixtures due to the instability of Li_yMnPO₄. Thermal decomposition of delithiated LiMnPO₄ and LiCoPO₄ phases have also been reported by Kim et al. [11] and Bramnik et al. [12]. Oxygen loss from these Olivines was observed at temperatures close to 200 °C.

Here we compare the thermal behavior of LiFePO₄/FePO₄ and LiMnPO₄/Li_yMnPO₄ samples using X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Heat generation in the presence of a lithium-ion battery electrolyte is also evaluated, and its impact on the safety of high energy phosphate Li-ion batteries is discussed.

2. Experimental

2.1. Synthesis

LiFePO₄ and LiMnPO₄ crystals were synthesized using the hydrothermal method described previously [13]. LiFePO₄ was delithiated by treatment with a solution of bromine in acetoni-trile. Chemical delithiation of LiMnPO₄ was achieved by stirring the crystals in a 0.1 M solution of nitronium tetrafluoroborate (NO₂BF₄, 95+%, Aldrich) in acetonitrile for 24 h, with a phosphate: oxidant mole ratio of 1:2. The reactions were carried out at room temperature in an argon-filled glovebox with O₂ < 1 ppm and H₂O < 2 ppm. Samples for *ex situ* X-ray diffraction (XRD) measurements were heated to 400 °C at a rate of 5 °C min⁻¹ and held at 400 °C for 2 h in a tube furnace purged with flowing N₂.

2.2. Characterization

X-ray diffraction patterns were acquired using a Panalytical Xpert Pro diffractometer with monochromatized Cu K α radiation. The scan rate was $0.0025^{\circ} \, s^{-1}$ in 0.01° steps. Thermogravimetric analysis (TGA) was carried out on a simultaneous thermal analyzer (STA 449 F3, NETZSCH) under flowing high-purity argon. 10–20 mg samples were loaded into covered Al₂O₃ pans in the glovebox. Data were collected between 30 and 600 °C with a heating rate

^{*} Corresponding author. Tel.: +1 510 486 5843. *E-mail address:* gchen@lbl.gov (G. Chen).

^{0378-7753/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jpowsour.2009.08.046

Fig. 1. X-ray diffraction patterns of the ${\rm Li}_y{\rm MnPO_4}$ sample before and after thermal treatment.

of 10 °C min⁻¹. Differential scanning calorimetry (DSC) was performed using a DSC 7 instrument (Perkin-Elmer). These samples were loaded into hermetically sealed 30 μ l stainless steel capsules in the glovebox and tested from 30 to 400 °C at a 10 °C min⁻¹ heating rate. The gold-gasketted capsules can withstand an internal pressure up to 150 atm, which suppresses the volatilization of solvent and ensures no weight loss during the experiment. The sample size for the solid was typically between 4.5 and 7 mg, and the solid to electrolyte ratio was fixed at 2:1 (w/w) to ensure the presence of excess electrolyte during the experiment. 1 M LiPF₆ in propylene carbonate (PC) and ethylene carbonate (EC, Ferro Corporation, 50:50 by volume and 44:56 by mole ratio) was used as electrolyte in this study.

3. Results and discussion

The hydrothermal LiFePO₄ crystals measuring 2 μ m × 0.2 μ m × 4 μ m and LiMnPO₄ crystals measuring 0.4 μ m × 0.1 μ m × 0.6 μ m along the *a*, *b*, and *c*-axes were uniform hexagonal plates with low specific surface area (<1 m² g⁻¹), comparable to samples prepared by solid-state synthesis. When the phosphate crystals were heated to 400 °C under flowing N₂, no structural change was observed by XRD. Delithiated LiFePO₄ crystals were also found to be stable during the thermal treatment, consistent with previous reports.

When a chemically delithiated, single-phase Li_yMnPO_4 sample (with *y* close to 0) was heated under the same conditions, structural decomposition occurred. Fig. 1 compares the XRD pattern of the phase before and after the thermal treatment. All of the new peaks in the pattern from the heated sample can be indexed based on $Mn_2P_2O_7$, with the strongest diffraction peaks located at 29° and 30.5° . The decomposition reaction releases O_2 according to Eq. (1), with a theoretical weight loss of 5.4%:

$$2MnPO_4 \to Mn_2P_2O_7 + 0.5O_2 \tag{1}$$

Fig. 2. TGA curves for LiFePO₄, LiMnPO₄, FePO₄ and Li_vMnPO₄.

The TGA profiles for phosphate samples are shown in Fig. 2. The delithiated Li_yMnPO_4 sample started to lose weight around 120 °C and had a total weight loss of 7% at 400 °C, higher than the theoretical value. This may due to absorption moisture from the air during transfer to the instrument, as the delithiated phase is known to be highly hydroscopic. In addition to its own contribution to weight loss, water can cause volatilization of phosphoric acid. It is also possible that some $Mn_2P_2O_7$ decomposes further, with additional oxygen loss. LiMnPO₄, LiFePO₄ and FePO₄ all maintained constant weight throughout the experiments, consistent with the XRD results.

Heat evolution during the thermal decomposition of the phosphates was evaluated by differential scanning calorimetry. The pure electrolyte, 1 M LiPF₆ in EC and PC, had an exothermic peak centered at 325 °C, as shown in Fig. 3a. The total amount of heat generated was 280 Jg^{-1} , comparable to the value reported by Katayama et al. [14]. The peak position, however, is about 30 °C higher in our DSC profile, which could be due to improved sealing of our DSC pans. The exotherm is attributed to redox reactions of LiPF₆ and its decomposition products, such as PF₅, with the carbonate solvents [15].

DSC profiles of LiMnPO₄ and LiFePO₄ in the presence of the electrolyte are shown in Fig. 3b. A broad peak centered at 299 °C and a sharp peak at 294 °C were observed for LiFePO₄ and LiMnPO₄, respectively. The heat evolved was $157 J g^{-1}$ for LiFePO₄ and $154 J g^{-1}$ for LiMnPO₄, consistent with the known low reactivity of these phases.

When chemically delithiated FePO₄ alone was heated to 400 °C, no heat signal was detected (Fig. 3c). Three exothermic peaks, centered at 173, 250 and 329 °C, were observed for Li_yMnPO_4 (the sharp peak at 280 °C is an artifact). The total heat generated was 200 J g⁻¹, corresponding to the exothermic reaction that releases O₂. This is

Table	1		

Heat generation from charged cathodes.

Material	Onset temperature (°C)	Peak temperature (°C)	Electrolyte ^a	Evolved heat (Jg^{-1})
LiNiO ₂ [20]	184	214	EC/DEC (33/67)	1600
LiCoO ₂ [20]	180	231	EC/DEC (33/67)	760
LiMn ₂ O ₄ [20]	207	289	EC/DEC (33/67)	990
LiNi _{0.8} Co _{0.2} O ₂ [20]	193	213	EC/DEC (33/67)	1200
Li(Ni _{0.8} Co _{0.15} Al _{0.05})O ₂ [21]	220	253/268	EC/EMC (30/70)	980
$Li(Ni_xCo_{1-2x}Mn_x)O_2$ [20], x = 3/8	270	297	EC/DEC (33/67)	290
$Li(Ni_xCo_{1-2x}Mn_x)O_2$ [22], $x = 1/4$	280	285	EC/DEC (33/67)	178
LiFePO ₄ [23]	250	280/315	PC/DMC	147
LiMnPO ₄ ^b	150/215	175/256/300	EC/PC (50/50)	103/781

^a The electrolyte salt is 1 M LiPF₆ except in Ref. [21] where 1.2 M LiPF₆ was used.

^b This work.

Fig. 3. DSC comparison of: (a) 1 M LiPF₆ in EC/PC; (b) LiFePO₄ and LiMnPO₄ with the electrolyte; (c) FePO₄ and Li_yMnPO₄; (d) FePO₄ and Li_yMnPO₄ with the electrolyte.

consistent with the TGA results, confirming that Li_yMnPO_4 decomposes above 120 °C while FePO₄ is stable.

The heat generated increased significantly when electrolyte was present with the delithiated phosphates (Fig. 3d). A series of overlapping peaks with onset temperatures of 250 °C and centered at 270, 280 and 315 °C were observed for FePO₄, accounting for a total heat of $204 J g^{-1}$. For Li_yMnPO₄, three main peaks were observed. The first ranged from 150 to 210 °C and was centered at 175 °C, with a total heat of $103 J g^{-1}$. The second and third peaks overlapped,

When electrolyte is present, the solvents can be oxidized by oxygen released from the electrode material. The heats of combustion [16] of PC and EC are 1818 and 1161 kJ mol⁻¹, and require 4 and 2.5 mol of O_2 respectively according to Eqs. (2) and (3):

PC:
$$C_4H_6O_3 + 4O_2 \rightarrow 4CO_2 + 3H_2O$$
 (2)

EC:
$$C_3H_4O_3 + 2.5O_2 \rightarrow 3CO_2 + 2H_2O$$
 (3)

This corresponds to $455 \text{ kJ} \text{ mol}^{-1}$ of O₂ for PC and $464 \text{ kJ} \text{ mol}^{-1}$ of O₂ for EC. For a PC:EC mole ratio of 44:56, and the release of 0.25 mol of O₂ per mole of MnPO₄, the total heat generated is calculated to be 768 J per g of MnPO₄, assuming all the released O₂ was consumed in solvent combustion. This is in good agreement with the measured value of 781 J g⁻¹.

Thermal runaway of Li-ion batteries occurs when the heat output exceeds thermal dissipation of the system. Exothermic reactions between the electrolyte and the cathode materials at elevated temperatures are considered to be primary contributors to thermal runaway. Lithium-ion cells, therefore, must pass a number of safety tests before they can be shipped and marketed [17,18]. Since the outcome of the thermal tests (pass or fail) is typically determined by the activity below 250 °C [19], the reaction heat released within this range is considered as one of the most important safety indicators for the cathode. Other factors, such as the onset and peak temperatures of the exothermic reactions, are also considered.

The thermal behaviors of current and potential cathodes for Li-ion batteries in contact with electrolytes have been studied extensively by DSC, accelerating rate calorimetry (ARC), and microcalorimetry. For comparison, we consider data that were collected from samples with similar surface areas and that were studied by DSC or microcalorimetry. Table 1 compares the amount of heat released by various charged cathode materials that are currently of commercial interest. For electrochemically delithiated oxide electrodes, thermal reactivity is largely dependent on the end-of-charge voltage. For consistency, the literature data in Table 1 are from electrodes that were charged to 4.2 V. LiNiO₂ is known for its thermal instability, as it releases 1600 Jg^{-1} (highest among those tested) with an onset at 184°C and peak center at 214 °C [20]. To improve its thermal behavior, other metals such as Co, Al and Mn have been used to replace a certain percentage of the Ni. These substituted electrodes, such as LiNi_{0.8}Co_{0.2}O₂, $Li(Ni_{0.8}Co_{0.15}Al_{0.05})O_2$, and $Li(Ni_xCo_{1-2x}Mn_x)O_2$, have been found to have much greater thermal stabilities [20-22]. The most stable variation, Li(Ni_xCo_{1-2x}Mn_x)O₂ (x = 1/4), releases only 178Jg⁻¹ at 285 °C, about 1/10th of that released by LiNiO_2. LiCoO_2 and LiMn_2O_4 were reported to release 760 J g $^{-1}$ at 231 °C and 990 J g $^{-1}$ 289 °C, respectively. Although the total heat is higher for LiMn₂O₄, it is considered a safer material because the majority of the heat is released above 250 °C.

LiFePO₄ is the safest cathode among those tested. The charged material has a high onset temperature of 250 °C and peak exotherm at 280 and 315 °C on the DSC profile. The amount of heat released is only 147 J g⁻¹, according to Yamada et al. [23]. Xiang et al. [4] and Joachin et al. [24] reported 260 J g^{-1} at 268 °C and 145 J g^{-1} at 277 °C, respectively. These results are in good agreement with our study where FePO₄ was found to release 204 J g^{-1} of heat peaked at 270, 280 and 315 °C.

Three exothermic peaks were observed in the DSC profile of Li_yMnPO_4 . The first peak (150–210 °C) is likely due to the release of O_2 from the phosphate. The combustion of the carbonate solvents then begins at 215 °C, the onset temperature of the second exothermic peak. The total heat generated was 884Jg⁻¹, with the peak at 256 °C. This is comparable to the results for LiCoO₂, LiNi_{0.8}Co_{0.2}O₂ and Li(Ni_{0.8}Co_{0.15}Al_{0.05})O₂. Surprisingly, the phos-

phate is more reactive than $LiMn_2O_4$ and the Mn-substituted oxides, $Li(Ni_xCo_{1-2x}Mn_x)O_2$.

Although LiFePO₄ is an intrinsically safe Li-ion cathode, LiMnPO₄ does not appear to have a safety advantage over the oxides. While the PO₄ group in the olivine structure has been credited with conferring higher voltages and increased stability on phosphate cathodes, this work demonstrates the large influence of the transition metal on both kinetics and thermodynamics of these materials. Upon oxidation of LiMnPO₄, the presence of the Jahn-Teller ion (Mn³⁺) causes structural instability due to lattice distortion. The accumulated strain energy restricts the growth of the delithiated LiMnPO₄ domains, which further decreases phase stability due to the high amount of reactive surface area in small domains. Moreover, manganese may also have a catalytic effect on the decomposition of the phosphate to release oxygen. The thermal instability of LiMnPO₄ may prove to be a barrier to its use in high energy lithium-ion batters, especially for vehicle applications where safety is of paramount importance.

Finally we wish to emphasize that the rate of heat release during thermal decomposition is directly related to the particle size and the specific surface area of the active material [25]. Nanosized LiMnPO₄ samples that are currently being investigated can be expected to generate heat at lower temperatures, and may react more completely. In a recent DSC study by Martha et al. [26] heat evolution of both lithiated and delithiated 25-30 nm LiMnPO₄ particles was compared to that for Li(Ni_{0.8}Co_{0.15}Al_{0.05})O₂ in a 1 M LiPF₆ in EC and DMC(1:1) electrolyte. Upon heating to 300 °C, the delithiated LiMnPO₄ had a total heat evolution of $954 J g^{-1}$ with a peak onset of 194 °C and centered at 220 °C, which showed it to be more reactive than our larger crystals. The authors, however, concluded that their carbon-coated LiMnPO₄ was safer compared with the oxides, as the heat evolution was only half of that released from a delithiated Li(Ni_{0.8}Co_{0.15}Al_{0.05})O₂ electrode (1863Jg⁻¹). Curiously, however, the uncharged electrode released even more heat $(2068 Jg^{-1})$ than its delithiated counterpart.

4. Conclusions

In the presence of a Li-ion battery electrolyte, delithiated LiMnPO₄ exhibited strong exotherms consistent with combustion reactions with the electrolyte solvents. The total released heat of 884 Jg^{-1} beginning at 150 °C and peaking at 256 °C was compara-

ble to that exhibited by charged $LiCoO_2$ electrodes. While $LiFePO_4$ has good thermal characteristics and has been shown to be a safer cathode, $LiMnPO_4$ does not appear to have the same advantage. This instability must be addressed before this cathode material can be commercialized.

Acknowledgements

We thank Dr. John Kerr of LBNL for assistance with the DSC measurements. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.

References

- [1] D.D. MacNeil, J.R. Dahn, J. Electrochem. Soc. 148 (2001) A1205.
- [2] H. Arai, M. Tsuda, K. Saito, M. Hayashi, Y. Sakurai, J. Electrochem. Soc. 149 (2002) A401.
 - [3] J. Li, l. Wang, Q. Zhang, X. He, J. Power Sources 189 (2009) 28.
 - [4] H.F. Xiang, H. Wang, C.H. Chen, X.W. Ge, S. Guo, J.H. Sun, W.Q. Hu, J. Power Sources 191 (2009) 575.
 - [5] Y. Wang, J. Jiang, J.R. Dahn, Electrochem. Commun. 9 (2007) 2534.
 - [6] G. Rousse, J. Rodríguez-Carvajal, S. Patoux, C. Masquelier, Chem. Mater. 15 (2003) 4082.
 - [7] C. Delacourt, P. Poizot, J.-M. Tarascon, C. Masquelier, Nat. Mater. 4 (2005) 254.
- [8] J.L. Dodd, R. Yazami, B. Fultz, Electrochem. Solid-State Lett. 9 (2006) A151.
- [9] G. Chen, X. Song, T.J. Richardson, J. Electrochem. Soc. 154 (2007) A627.
- [10] G. Chen, T.J. Richardson, J. Electrochem. Soc. 156 (2009) A756.
- S.-W. Kim, J. Kim, H. Gwon, K. Kang, J. Electrochem. Soc. 156 (2009) A635.
 N.N. Bramnik, K. Nikolowski, S.M. Trots, H. Ehrenberg, Electrochem. Solid-State
- Lett. 11 (2008) A89.
- [13] G. Chen, X. Song, T.J. Richardson, Electrochem. Solid-State Lett. 9 (2006) A295.
- [14] N. Katayama, T. Kawamura, Y. Baba, J. Yamaki, J. Power Sources 109 (2002) 321.
 [15] J.S. Gnanaraj, E. Zinigrad, L. Asraf, H.E. Gottlieb, M. Sprecher, M. Schmidt, W. Geissler, D. Aurbach, J. Electrochem. Soc. 150 (2003) A1533.
- [16] S.P. Verevkin, V.N. Emel'yanenko, A.V. Toktonov, Y. Chernyak, B. Schäffner, A. Börner, J. Chem. Thermodyn. 40 (2008) 1428.
- [17] Underwriters Laboratory Inc., Standard for Lithium Batteries, Document 1642, 3rd Edition, 1995, ISBN 1-55989-829-1.
- [18] S.-I. Tobishima, K. Takei, Y. Sakurai, J.I. Yamaki, J. Power Sources 90 (2000) 188.
- [19] D.D. MacNeil, J.R. Dahn, J. Electrochem. Soc. 149 (2002) A912.
- [20] D.D. MacNeil, Z. Lu, Z. Chen, J.R. Dahn, J. Power Sources 108 (2002) 8.
- [21] I. Belharouak, D. Vissers, K. Amine, J. Electrochem. Soc. 153 (2006) A2030.
- [22] Z. Lu, D.D. MacNeil, J.R. Dahn, Electrochem. Solid-State Lett. 4 (2001) A200.
- [23] A. Yamada, S.C. Chung, K. Hinokuma, J. Electrochem. Soc. 148 (2001) A224.
- [24] H. Joachin, T.D. Kaun, K. Zaghib, J. Prakash, J. Electrochem. Soc. 156 (2009) A401.
- [25] J. Jiang, J.R. Dahn, Electrochim. Acta 49 (2004) 2661.
- [26] S.K. Martha, B. Markovsky, J. Grinblat, Y. Cofer, O. Haik, E. Zinigrad, D. Aurbach, T. Drezen, D. Wang, G. Deghenghi, I. Exnar, J. Electrochem. Soc. 156 (2009) A541.